$\left| {\begin{array}{*{20}{c}}
1&x&y\\
2&{\sin x + 2x}&{\sin y + 2y}\\
3&{\cos x + 3x}&{\cos y + 3y}
\end{array}} \right|$ મેળવો.
$cos(x + y)$
$cos(xy)$
$sin(x + y)$
$sin(x - y)$
જો $\left| \begin{array}{*{20}{c}}
{ - 2a}&{a + b}&{a + c}\\
{b + a}&{ - 2b}&{b + c}\\
{c + a}&{b + c}&{ - 2c}
\end{array}\right|$ $ = \alpha \left( {a + b} \right)\left( {b + c} \right)\left( {c + a} \right) \ne 0$ તો $\alpha $ મેળવો.
$\left| {\,\begin{array}{*{20}{c}}1&a&{{a^2} - bc}\\1&b&{{b^2} - ac}\\1&c&{{c^2} - ab}\end{array}\,} \right| = $
$\lambda$ અને $\mu$ ની કિમંત મેળવો કે જેથી સમીકરણ સંહતિ $x+y+z=6,3 x+5 y+5 z=26, x+2 y+\lambda z=\mu$ નો ઉકેલગણ ખાલીગણ થાય.
જો $x + y - z = 0,\,3x - \alpha y - 3z = 0,\,\,x - 3y + z = 0$ ને શૂન્યતર ઉકેલ હોય, તો $\alpha$ ની કિમત મેળવો.
જો સમીકરણ સંહિતા
$x-2 y+3 z=9$
$2 x+y+z=b$
$x-7 y+a z=24$
ને અનંત ઉકેલો હોય તો $a - b$ ની કિમત મેળવો